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Diffusing acoustic wave spectroscopy
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We have developed a technique in ultrasonic correlation spectroscopy called diffusing acoustic wave spec-
troscopy(DAWS). In this technique, the motion of the scatteréegy., particles or inclusionss determined
from the temporal fluctuations of multiply scattered sound. In DAWS, the propagation of multiply scattered
sound is described using the diffusion approximation, which allows the autocorrelation function of the tempo-
ral field fluctuations to be related to the dynamics of the multiply scattering medium. The expressions relating
the temporal field autocorrelation function to the motion of the scatterers are derived, focusing on the types of
correlated motions that are most likely to be encountered in acoustic measurements. The power of this tech-
nique is illustrated with ultrasonic data on fluidized suspensions of particles, where DAWS provides a sensitive
measure of the local relative velocity and strain rate of the suspended particles over a wide range of time and
length scales. In addition, when combined with the measurements of the rms velocity of the particles using
dynamic sound scattering, we show that DAWS can be used to determine the spatial extent of the correlations
in the particle velocities, thus indirectly measuring the particle velocity correlation function. Potential appli-
cations of diffusing acoustic wave spectroscopy are quite far reaching, ranging from the ultrasonic nondestruc-
tive evaluation of the dynamics of inhomogeneous materials to geophysical studies of mesoscopic phenomena
in seismology.
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[. INTRODUCTION accounts of the technique have been published previously
[4-6], the aim of this paper is to give a sufficiently complete
The scattering of ultrasonic waves, especially from ob-description of DAWS to facilitate its practical implementa-
jects buried inside optically opaque materials, has been usétbn in a wide range of possible applications.
extensively to image internal structures in inhomogeneous Diffusing acoustic wave spectroscopy determines the dy-
media and to probe their physical propertidd. For ex-  namics of strongly scattering media from the temporal fluc-
ample, many applications have been demonstrated in botiuations of ultrasonic waves that are scattered many times
acoustic microscopy2] and medical imaging, ranging from before leaving the sample. This technique is made feasible
three-dimensional visualizations of subsurface details in carby recent progress in understanding the diffusion of multiply
bon nanotubes to images of fetuses and blood flow in humascattered ultrasonic waves, an approach that we have shown
beings[3]. However, these methods break down in materialgo be extremely powerful and remarkably accurate for de-
where strong multiple scattering occurs, since multiple scatscribing acoustic wave transport under these condifid|&.
tering scrambles the directions in which the waves are travBy modeling the ultrasound propagation using the diffusion
eling and exact information on the location of the scatteringapproximation, we show how this technique determines the
objects is lost. In this case, images of the scattered wave fiel@dlative motion of the scatterers from the autocorrelation
are dominated by acoustic speckle, which arises from théunction of the field fluctuations. Since multiply scattered
interference between the scattered waves that have traveledund is used, each scatterer need move only a minute frac-
different multiple scattering paths through the sample. Thustion of a wavelength for its motion to be detected, giving
speckles can completely obscure static images of the scattesxtremely high sensitivity to small displacements of the scat-
ers, and different approaches are needed to extract meaningrers. This technique is analogous to diffusing wave spec-
ful information from the scattered waves. One such approactroscopy(DWS) using light[9,10], which has been used to
is to use the fluctuations that occur in the speckle patterstudy a wide range of systems and physical phenomena,
when the scatterers are moving to investigate the systemignging from particle sizing to measurements of particle mo-
dynamics. This is the approach followed in this paper, whereion on angstrom length scales, and from the aging of foams
we describe an ultrasonic technique, called diffusing acoustito high frequency rheologyl1,12. However, the motion of
wave spectroscopyDAWS), and demonstrate its potential wavelength-sized particles in ultrasonics is generally quite
for investigating the dynamics of strongly scattering mediadifferent from that measured using light, necessitating a care-
over a wide range of time and length scales. While briefful examination of the correlation function from which the
particle dynamics are determined. The experimental ap-
proach is also different, largely because of the relative ease
*Present address: FNC Inc., 606 Van Buren Ave., Oxford,with which pulsed measurements can be performed in ultra-

MS 38655. sonics, an approach that leads to a significant simplification
TAuthor to whom correspondence should be addressed. Electronia the measurement of particle dynamics from the temporal
address: jhpage@cc.umanitoba.ca correlation function. We illustrate the feasibility of DAWS
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by showing how it can be used to measure the relative meaincident
square displacement and local strain rate of fluidized susperSound
sions of particles, where this technique has recently led tc
valuable insights into their complex flow behav(d.

The outline of this paper is as follows. In Sec. Il, we
derive the relationship between the field autocorrelation
function that is measured experimentally and the relative
mean square displacement of the scattering particles. Th
temporal evolution of the relative mean square displacemen
is described in systems with partially correlated particle
flows, and the approximate relationship between the local
relative velocity and strain rate is discussed. Since it is usu-
ally best to perform diffusing acoustic wave spectroscopy
measurements in pulsed mode, the main emphasis is o
pulsed DAWS, although the autocorrelation function for
continuous-wavedcw) DAWS is also presented. Section Il
describes how DAWS experiments are performed. The mini-
mum multiple scattering path length required for accurate ) , , _
DAWS measurements is determined, and the results of FIG. 1. .Segment of a multiple scattering path with moving scat-
pulsed and cw DAWS are compared to illustrate the relative®"e"s Solid spheres aretat 7, open spheres are &t0.
advantages of the two approaches. In Sec. 1V, representative N N
data for the experiments performed on fluidized suspension - - -
of particles are presented in order to illustrate the consider—2 d’(n)(T):pZO Aol T):pzo [Kp AT a(7) = Ary(7)}]
able range of dynamic information that can be obtained using
DAWS. Our main conclusions are stated in Sec. V.

A Arp (T)

/’
r, 0" P
//

n-1
= 2, Ky Alrap(m) +[Ko- ATy ()~ ko ATr(7)],

Il. THEORY (2)

In diffusing acoustic wave spectroscopy, it is the temporal -
fluctuations of the multiply scattered pressure figld) that wherek, is the wave vectgr of the wave scattenid from the
are measured experimentally, and the motion of the scattePth to the (+1)th particle, andAr e p(7)=Arp1(7)
ing particles can be determined directly from the field auto-—Ar,(7) is their relative displacement during the time inter-
correlation function, val 7. The last two terms represent the motion of the first and

last scatterer relative to the sourqe={0 term and detector
(p=n term), respectively; for largen their contribution is
J(t) o (t+ 7)dt small and can be neglected. By definition, the average dis-
(1) tance between particles in the scattering path is given by

(IFpr1—Tply=1. The phase changa¢(™(7) can also be
written in terms of the scattering wave vect(irp:kp

—kp—1 as ApM(7)=27_,q, Arp(7), but this commonly

To calculateg,(7), we model the propagation of ultrasound USed form in DWS is not appropriate when the motion of
through the material using the diffusion approximation, in@djacent scatterers in the path is correlated, as is likely to
which the multiply scattered ultrasonic waves travel throughPceur for the large millimeter-sized particles that scatter ul-
the sample in a random-walk process characterized by thgasonic waves strongly. The total field autocprrelatlon func-
transport mean free patf, the energy velocity, and the tion |s_0bta|ned by averaging over all paths Wltbve_nts and
diffusion coefficientD=v,l*/3. In what follows, we will Summing over all path lengthse., alln) th_at_ contribute to
discuss the transmission geometry in which the generatdh® total field measured at the detector, giving

and detector are on opposite sides of the sample, although

the method can be readily extendgd to tr{-_\at the refleqt|on 91(7)22 92(7)22 P(n)<e—|A¢(“>(T)>_ 3)
geometry as well. For the ultrasonic experiments described n n

below, the scattering is almost isotropic on average, so that

I* =] =1, wherel, is the scattering mean free path. We be-Here the factoP(n)={(| 4™ (0)|?)/{|?|) is the fraction of

gin with the isotropic scattering case by considering a singleéhe total scattered sound intensity in paths havirgcatter-
random-walk path ohf steps through the sample having total ing events. In a continuous-wave experiment, the summation
lengths=(n+ 1)l [13]. This path’s contribution to the decay in Eqg. (3) extends over alh. However, in a pulsed experi-

of g4(7) is determined by the total phase change resultingnent, the average path lengtlis selected by measuring the
from the motion of all the scatterers in the path. From Fig. 1field fluctuations at a fixed sampling tinig=s/v after the

it is clear that this phase change can be written as input pulse is incident on the sample, and the summation is

91(7)=
[ lncwrzar
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restricted to include only those paths whose length differs nk2

from the average by the pulse widthA/v,). In particular, 91(T)zexl{ - ?(Arrzel( D) 8
for a narrow pulseP(n) is essentially constant in the sum-

mation overn and the normalized field correlation function Here, in a pu|sed expenmem is determined by the path

takes on the relatively simple form length and is directly related to the amount of time that the
A ultrasonic waves have spent traveling through the sample.
g1(7)=(e )- 4) When the directions of the wave vector and relative mean

square displacement are correlated, the average magnitude of
Equation(4) shows immediately one of the great advantages a P g g

of pulsed measurements, namely, thatr) does not depend Arfe' p(7.1) projected along the wave vectbg depends on
on the effects of boundary conditions or absorption in thethe angle 6, between Afrel p(rl) and k,. As a result,
diffusive propagation of ultrasound through the sample.  the average 0f<(k Arre, p)2> ((kp Arre, p(¢9p)cos¢9p)2>

For largen it is a good approximation to assume that the = ak2<Ar,e,)/3 is reduced by a numerical factar, which
successive phase shiffs,(7) in Eq. (2) are uncorrelated. measures the fraction of the relative mean square displace-

Then Eq.(4) becomes ment of the particles detected by DAWS. For example, the
L L factor « is reduced from 1 for uncorrelated motion to 0.6 for
ga(m)=(e K Are(mDyn=( gk ArrelnR)), (5)  simple shear flow14], while in the extreme case of a pure

rotation,« = 0, since the component (Afrre,p(f |) parallel

to the wave vector between adjacent scatterings is zero in
this casd 15]. By contrast, for the fluidized suspensions in-
vestigated in this paper, the motion is almost certainly uncor-
related over long measurement times; thus the magnitude of
a is expected to be quite close to unity in this case, allowing

n . . us to use Eq(8) directly. In general, as shown by Bicout and
gl(r):ex;{ - 5([k-Arre,( 1% Maynard[15], this effect can be described quantitatively in
terms of the temporal evolution of the strain tensor

where the second term gives the contribution from the rela:
tive motion of the first and last particles in the scattering
path, which are separated by a distafRcén a transmission
experimentR~L, whereL is the sample thickness. Equation
(5) can be further simplified to

1 . PO
XeXF{ - §{<[k'Arre|(7, R)]2>_<[k Arrel( T!I)]2>}}’

(6)
that characterizes the local flow patterns. Henér)

where we have used a cumulant expansion, retaining only
the leading nonvanishing term, which is the second cumulant Ar(T) s the change in the position of theth particle
([K-AF o(7)]?). Higher-order terms in the cumulant expan- /°cated at position , andi,j represent, y, andz By ap-
sion are negligible since, for the range of times over Whic’,gox.lmatlng the relatl_ve d|splacgment of the 'part|cles by the
0:(7) can be reliably measured, the phase fluctuations ar ading term of a series expansion, we obtain
small for any step along any path having largdn Eq. (6),
< -) denotes both a configurational average over the change
in position of the scatterers and an average over all possible

wave vect0r$<p. When the directions dof andAr,e, are not
correlated, the average in E@) is easy to perform, giving

au;(7) () au;(7)

ﬁrl ar; (9)

SIJ(T)

2

Al p=Arp 1= Arp=I(g,-V)U, (10

Wher ee =elPj +e(p)1 +elPk is a unit vector in the direc-

tion of k . The phase changkd,(7) then becomesignor-
ing the effect of the first and last scattering events

nk? 5 1 5
gl(T)zeXF{_?(<Arrel(7’|)>+ﬁ{<ArreI(T’R)> A¢p(7'):klz ei(P) eJ(P)sij(Fp,T)_ (12)
1]

—<Ar?e.<r,|>>}) :

(7 Since for isotropic scattering tk&; are randomly distributed,
(A¢y(7)) is simply obtained by averaging each term in Eg.

The term in curly brackets will be zero if the motion of (11) over the unit sphere, giving

particles is uncorrelated 2for all distanzces greater than or L

equal tol, since then(Ar (7,R))=(Ari(7l)). Further- _t )

more, in this case of uncorrelated motiofArZ(7,1)) (Adp() k|<E 8“>' (12

is twice the single-particle mean square displacement

(Ar?(7)), leading to the form often used in DWS for diffu- Thus, only the sum of the diagonal terms in the strain tensor

sive motion[9,10]. However, even when this condition is not survives in the ensemble average, showing the# (7))

satisfied, the term in curly brackets in E@) at most gives a =0 unless there is a uniform dilation or compression of the

contribution that is of order f/times smaller than the first entire sample. Therefore, as stated above, for incompressible

term and can be neglected for large enouglgiving, to a  media the decay aj,() is determined b)(A¢f)(r)>, which

good approximation, the simple relation is now given by
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For suspensions of particles with dimensions comparable
(13)  to the ultrasonic wavelength at megahertz frequencies, the

<(E Eii >+22 <£ﬁ> -
: Peclet number Pel, so Brownian motion is negligible and

The first term in Eq(13) describes the effect of fluctua- the motion of the particles is expected to be ballistic over
tions in the density of the medium, due to local variations inshort time intervals. Then\r ,(7)= V 7, and the relative
the number of particles per unit volume, while the secondnean square displaceméiitr; (7)) = <Avre|> 72 provides a
term is simply the sum of all the mean square tensor straingneasure of the local variance in the relative velocity of the
Thus the contribution to the relative mean square displaceparticles. In this regime, the strain is also proportiona| o
ments of the particles that is measured in DAWS can behat the phase fluctuat|or(s&¢ (7)) can be conveniently
written in terms of the average strainas expressed in terms of the straln rate tensgf,=g;;/7
=19V, ldr;+aVjlar;) [15]. Thus, DAWS can also be used

to measure the average local strain rAte &/ T~AVo/l*,

(A¢g (T))‘

2 _ 212
(Aol meab 1)) =&71%, (14 whereAV = (AVZ).
where Information on the spatial correlations of the particle mo-

tions can be obtained by varying the length sd¢&lat which
(ArZ(7)) and (AV2) are measured. The relative mean

Py E <(2 8“)2> +22 <82> (15) square displacement of particles separated*bgan be ex-
5 : S pressed as

To calculateg,(7) from a model for the strain field when the 2 ik S -

strains are inhomogeneously distributed throughout the (Ar(1™))=([Ar(I*) = Ar(0)]%)

sample volumeg? should also be weighted by the spatial — (AT — 2(AT(1*)- AT 1
distribution of diffusing sound in the medium for paths of (Arf)=2(ar(I®)-Ar(0)). (18
lengths [15]. At early 7, where the motion is ballistic, this equation can be

When the scattering is anisotropic, so that-1g, all of  written in terms of the variance of the velocities as
the expressions fay,(7) in this section still hold providing

that | is replaced everywhere bl . This result was first - —_—
shown in DWS for particles undergoing random Brownian 2 (%)= 2V _ (V(0)-v(™))
motion [9,10]; it has also been demonstrated more recently Vel (IV(0)|?)
for particles in flows, so long as the strain and velocity fields

vary slowly on the scale of the transport mean free paffh. =~ WhereV s is the root mean square velocity, which can be

Thus, the field autocorrelation function can be written as measured using dynamic sound scatteiD§S [4]. Equa-
tion (19) shows that the length scale dependence of the rela-

i tive mean square velocity of the particles is intimately re-
1(7')”exl{——<ere|(T|*)>} (16) Iated. to ﬁthe Lnstantaneous spatial veloelty correlaﬂon
function (V(0)-V(1*))/{|V(0)|?), and that this correlation
function can be probed by varying in diffusing acoustic
wave spectroscopy.
To calculate the correlation functiorg{®¥(7) for
continuous-wave DAWS, we replace the sum in E4). by
17 an integral over all path lengttss where path length distri-
bution functionP(s) is given by the solution of the diffusion
Here the number of scattering events in the patk,s/I* equation, taking into account the appropriate boundary con-
—1~s/1* =v t/1* is determined by the sampling tintg,  ditions and the effects of absorptiph8]. For a slab-shaped
given by the corresponding time that the ultrasound has spesample cell with boundaries having an average reflectivity
diffusing through the sample. R, g{™(7) in transmission is given by

: (19

or

91(7)“9XF{— 6 e2(7,1%) .

k2|*2

_(L+20)/( Zo+ C){sinh(zy\/q?+ a?) + C\/g?+ a’cosh zg\/q? + o2 )}
[14+C2(g%+ a?)]sinf(L g2+ a?) + 2Cg°+ a’cosi L \g°+ &)

(20)

gi™"(7)= f P(s)exr{ - _k2<Arre.( 7))/6|d

whereq?=k3(Ar2(7))/21*2, a®?=1/Dr,, , is the absorption timez,~1* is the distance inside the sample where sound
diffusion “begins,” andC=34I*(1+R)/(1—R). Thus, mvertlngg("w)(r) to determine the motion of the scatterers is more
complicated for cw DAWS, and requires a more complete description of the diffusive propagation of sound through the
sample.
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where the ultrasonic wavelengkhis comparable to the par-
ticle radiusa, and strong multiple scattering is evident from
the long range of transit times taken by the input pulse to
reach the detector. Since the scattering particles are moving,
the wave form changes with each subsequent acquisition of
the scattered field, allowing their dynamics to be probed on a
time scale determined by the inverse of the pulse repetition
frequency. In this example, the pulse repetition rate was 100
ms, allowing the fluctuations in the transmitted field to be
easily seen, and showing clearly that the fluctuation rate in-
creases with transit time through the sample as the multiple
0 5 10 15 scattering paths become longer. This figure shows graphi-
Time (ps) cally how the sensitivity of the measurements to small mo-
) - tions of the scatterers can be controlled by selecting the sam-
FIG. 2. Sequence of tra_nsmltted wave forms, consisting of ling time and hence the path length—the longer the path,
waves that have been multiply scattered in the sample after g, o 0q1er the sensitivity to small displacements of the par-
1-us-wide input pulse is incident on the front face of the sample... - - .
The input pulse is centered B0 s. As the time for the muliply ticles, since the sound sca_ltters more times before leaving the
?_mple and each scattering particle has to move a smaller

scattered waves to travel through the sample increases and the sc i f | th t hi th lated
tered path lengths become longer, the rate at which the scatter ction of a wavelenginh to ac _|eve € same accumulate
ase change of the scattered field.

field becomes decorrelated on subsequent pulse repetitions i G . .
creases. To optimize the rate at which the fluctuations can be

probed in pulsed DAWS, it is advantageous to measure the
Il EXPERIMENT field fluctuations at a single sampling tinhgafter the input
pulse is incident on the sample, rather than to digitize the

To demonstrate how DAWS can be realized experimenentire wave form. This is achieved by using a boxcar inte-
tally, fluidized beds were constructed in which 0.875-mm-grator to sample the scattered field over a very narrow time
diameter glass beads were suspended in a mixture of 75%terval, chosen to be much less than the ultrasonic period so
glycerol and 25% watef4,5]. The liquid was pumped up- that the true field at this instant is accurately measured. The
wards at a constant velocilys to counterbalance the gravi- sampled field at this point on the wave form is then digitized
tational sedimentation of the beads, different values/pf for each repetition of the pulse using the gated digitizing
being selected to vary the volume fraction of the particlesoption of a PC oscilloscope card. In these measurements, it is
between 0.08 and 0.50. For this choice of glass bead dianeritical to synchronize the acquisition rate of the oscilloscope
eter and liquid viscosity, the particle Reynolds number, Re to the pulse repetition frequency, and the use of gated digi-
=2apsVy/ 7, ranges from 0.3 at 23°C to 0.9 at 27 °C. Heretizing was found to be more reliable than attempting to syn-
ps and n are the fluid density and viscosity, respectivalys  chronize the time base of the digital oscilloscope and the
the particle radius, an¥, is the Stokes velocity. In this pulse repetition period. The use of the boxcar dramatically
paper, we show representative results obtained using sevelatreases the rate at which data can be acquired in successive
different fluidized beds, although most of the data were takemepetitions of the pulse, and allows the temporal fluctuations
in a bed with height, width, and thickness of 450, 178, andof the scattered field to be sampled at times separated by
12.8 mm, respectively. Uniform flow at the bottom of the values that approach the fundamental limit imposed by the
beds was established using a distributor of close-packed stéime taken for sound to diffuse across the sample, typically
tionary beads. 50-100 us in the current experiments. Although this

The majority of our measurements of the temporal corremethod does not allow the amplitude and phase of the scat-
lation function were performed using pulsed techniquestered fields to be independently determined, it does allow the
thereby taking advantage of the higher power levels and befield correlation function to be calculated directly from the
ter signal-to-noise characteristics of pulsed ultrasonic experiescilloscope data. Since any point on the scattered wave
ments relative to cw methods. We used a transmission geonfierm can be selected by shifting the gate position on the
etry, in which the incident pulse was an excellentboxcar integrator, the main advantages of pulsed diffusing
approximation to a plane wave over the cross section of thacoustic wave spectroscopy can all be realized with this rela-
sample, and the transmitted multiply scattered field was detively simple technique.
tected in a singlénear-field speckle using a miniature hy- Typical results using this method are shown in Fig. 3. In
drophond7]. For pulsed measurements, the full time depen+ig. 3(a), a single snapshot of the transmitted field is shown
dence of the scattered field transmitted through the sampland compared with the input pulse. Two sampling tirnest
after each incident pulse can, in principle, be measured, giwhich the field is measured by the boxcar on subsequent
ing a series of time-domain pictures of the scattered fieldepetitions of the input pulse are shown by the vertical ar-
wave form, recorded at each repetition of the incident pulserows. By using a pulse repetition frequency of 1 kHz, the
As an illustrative example, we show in Fig a sequence of field fluctuationsy(t) were measured every millisecond, giv-
transmitted wave forms taken in the fluidized bed. The caring the results shown in Fig.(8), where the fluctuations at
rier frequency in the pulse was centeredfat2.3 MHz, these two sampling times are compared over a 2-s time in-

2k

Transmitted Field (arbitrary units)
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' Input] ' ' Transr'nitted 11x10? \
=] \ B DATA ¢4=0.50
R 44t —— Eq. (7) with AV, (Z) = 5.0 mm/s -
= :“:‘. 0 i 0 ".\ O DATA ¢=040
g ' ' A N Eq. (7) with AV (L) = 6.9 mm/s
=]
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0 5 10 15 2? 25 30 35 g
Transit Time (us) B
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= 0.01
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N 0.00 L/
< [~
E o0l 1
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n
FIG. 4. The rms relative velocity determined from the experi-
O mental data using Eq16) as a function of the number of scattering
o0 eventsn (symbols. The curves represent the sum of the actual rms
relative velocity, as measured from long path lengths, plus the cor-
rection term given in Eq(7), which is fitted to the experimental
- data thereby determining\V2(R)).
§ Note that these measurements give the field autocorrelation
A functiong,(7) directly. To further improve the statistics, this
3;2 procedure was repeated 50 times and the resulting correlation
o functions then averaged together. Results dof7) at the
a 10-6 | N N MR | . . . .
v 0.01 o1 two sampling times selected in FiggaBand 3b) are shown

Time (s) in Fig. 3(c), indicating that the correlation function decays
more quickly for the longer path lengths probed at the larger
FIG. 3. (8 Input (left) and transmittedright) pulses. The verti- Sampling time, as expected from HA46).
cal arrows indicate two different times at which the field is sampled. To determinQArfel( 7)) or ;2( 1) from g4(7), the param-
The fields are normalized so that the peak value of the input pulse igterss=uv .t, |*, andk must be determined from measure-
equal to 1.(b) The field fluctuations measured at these two sam-ments of the diffusive and ballistic transport of ultrasound
pling times. The solid curve correspondstie 17.8_,us, while the through the sampl¢7,8,20—22. For suspensions of solid
dashed curve correspondstie=27.8 us. (¢) The field autocorre-  particles in a fluid, we have shown that it is a good approxi-
Ifatlon functions calcglated from the field quctanoﬂd) The rela.- ation to takev e~V and|* ~I,, so that a first-order esti-
t!ve mean square displacements of the particles as a function cmate of the required ultrasonic propagation parameters can
time. be obtained from ballistic measurements of the scattering
mean free paths, the phase velocity , (=2f/k), and the
terval. Generally, a sequence of 131000 pulses was usegroup velocityv,. More accurate results can be obtained by
allowing the variation in the fields(t) to be followed over measuringD and |* directly from pulsed and cw experi-
~2 min, long enough to have sufficiently good statistics toments on the diffusive propagation of ultrasound through the
determine the correlation function with excellent sensitivity. sample, using the methods described in Ré&f. Using the
The temporal autocorrelation functions #{t) were calcu-  values ofv,, |*, andk determined in these experiments, we
lated from the digitized field fluctuations using fast Fourieruse Eq.(16) to invert the correlation functions in Fig(@®

transforms(FFT) and the correlation theorem, which statesand determine the time dependence &f2,(7)), as shown
that the Fourier transform of an autocorrelation function isin Fig. 3(d). Note that the data taken at the two different
equal to the product of the Fourier transform of the functionsampling times give essentially the same values of

and its complex conjugafd.9]. For long record lengths, this (Ar2 (7)), demonstrating that the dependence on path length
FFT method is much less computationally intensive than thes correctly described by our model for the correlation func-
brute force calculation using the relation tion.

To explore the path length dependence in more detail, we

e have taken measurements at several different sampling times

1 or path lengths. By comparing the relative mean square dis-
Y(t) ¢ (t+ 7)dt n—j Z‘l )y (=) placements calculated from our data using 8d), we can
g1(7)= ~ n . test whether the correction term introduced by the first and
2 1 . . . . -
f|,/,(t)| dt - 2 ()] last scattering events is negligible. In Fig. 4, the relative
ni=1 ' mean square velocities extracted from these data sets are

(21 plotted versus the number of scattering events, for samples
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with two different volume fractions. Fon>20 the differ-
ences caused by thenléorrection term in Eq(7) are small
and not significant when compared to other sources of un-
certainty (e.g., in the transport mean free path and energy
velocity). However, asn gets smaller, the influence of the

correction term becomes evident. To investigate the magni- o
tude of the correction term, we fit the form expected from E
Eq. (7), treating(AVZ%(R))=(ArZ,(R))/7? as the unknown, A
to obtain the solid and dashed curves in Fig. 4. As an ex- B
ample of the results of these fits, we find for the 50% volume 5

fraction data, that the fitted value d&fV,¢(R) is 5.0 mm/s;
this value is between our independent measurements, using
DAWS and DSS, ofAV,,=3.1 mm/s at a separation equal
to the sample thickness of 5.4 mm, afdV, = 2V,ms ;
=7.6 mm/s at separations larger than the correlation length 10" = ""1'(').3 — ""1'(').2 o
(é=22 mm). Thus, the value aAV,,(R) extracted from TIME (s)
the fit is reasonable, since the average distance between the
first and last scattering events should be somewhat larger FIG. 5. Comparison of pulsetbpen symbolsand cw (closed
than the sample thickness. It should be noted that these réymbols DAWS measurements of the relative mean square dis-
sults imply that pulsed DAWS can be used on samples whos@lacement at two different volume fractions.
thickness is less than the four mean free paths that are . )
needed for the diffusion approximation to accurately deter/€lative mean square displacements obtained from cw and
mine the distribution of path lengttig4]. One need only set Pulsed DAWS. Our results are shown in Fig. 5, where the cw
the sampling time, or equivalently the path length, to be long?d pulsed data are represented by the solid and open sym-
enough that the detected ultrasound has undergone more thBflS, respectively. Note the increased sensitivity of the cw
20 scattering events. This is in contrast to the situation wittflata to the early time motion. Good agreement between the
continuous wave DAWS or DWS, where in order to examinetWo methods is found, especially for times between3and -
thin samples one must go beyond the diffusion approximal0 ° s, where they give essentially the same rms velocity.
tion, for example, by using radiative transfer theory or theAt later times the agreement is not as good, most likely due
telegrapher equation, to take the short paths into accoui@ the increased contributions to the cw autocorrelation func-
[25,26]. tion of short paths through the sample at large correlation
We have also investigated the relative motion of the scatlimes @; decays more slowly for short paths than for longer
tering particles using continuous waves instead of pulses, Baths, since these paths are not as well modeled by the
method that is similar in many respects to that usually emdiffusion approximatiorj25]. Nonetheless, continuous-wave
ployed in diffusing wave spectroscopy with light. The poten-DAWS allows for the measurement of faster particle dynam-
tial advantages of cw DAWS are twofold: first, the ultrasonicicS than pulsed techniques, and gives accurate results of the
waves are monochromatic, thus avoiding possible complica€lative mean square displacements at short times where this
tions in the analysis in cases where the ultrasonic mean fre@chnique is most needed.
path or energy velocity are strongly frequency dependent,
and second, it is possible to measure faster dynamics, since IV. RESULTS AND DISCUSSION
the fluctuations can be measured continuously without wait-
ing for the next pulse to propagate through the sample. How- Figure 6 shows typical results for the variance of relative
ever, these advantages are often outweighed by the increas@$an square particle displacements measured by DAWS in
complexity of the correlation function in cw DAWS, limiting fluidized suspensions. Here we show the time dependence of
its usefulness to those cases where fast dynamics or vefyAr%(7)) for several volume fractions in two cells having
large ultrasonic dispersion makes pulsed techniques less rdifferent thicknesses. The data for the two cells are in excel-
liable. To directly measure the field fluctuations in cw lent agreement, except for the datadat0.40, where the
DAWS, the boxcar is phase locked so that the scattered fieldifference in(ArZ,(7)) can be entirely accounted for by a
is measured at regular time intervals that are exact multiplemeasured difference in temperature. These measurements
of the period of the input wave. Thus the true fluctuations ofwere performed at a frequency of 2.35 MHz, for which the
the field, due to the combined effects of the fluctuations inultrasonic wavelength\ in the suspension varied slightly
amplitude and phase, are measured without the trivial contrifrom 0.68 to 0.75 mm as the volume fractiah was in-
bution due to the expgt) oscillations of the carrier wave. creased from 0.18 to 0.50. Note the range of distances
Having measured the field fluctuations, the cw field autocorprobed by this technique: these range frem /2 down to
relation function is determined using the same FFT method /1000 at the earliest times, illustrating the extremely good
described above for pulsed DAWS. sensitivity of DAWS to small relative displacements of the
By determiningg(fw>(r) for these data, and solving for particles. At early timegArZ,(7)) varies quadratically with
(ArZ(7)) using Eq.(20), we can compare the values of the time, as expected when the particles move in ballistic trajec-
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FIG. 6. Mean square displacement of the beads relative to their F|G. 8. The rms relative velocity, normalized by the fluidization
neighbors at several. volume fractiogs along with fits of the phe- velocity, as a function of*/a, which determines the average par-
nomenological function given by E¢22) to the data. ticle separatior(in units of the particle radiua) at whichAV,q is

measured. Experimental results for two volume fractions are shown
tories with relative velocityAV,.. At later times, however, (symbolg along with fits of Eq(23) to the datasolid curves. The
the relative mean square displacement varies less Strong{&@tted horizontal lines represent the rms velocity of the particles
with time, becoming approximately independent of time atmeasured using dynamic sound scattering, and the dashed lines
the longest times measured, as the particle trajectories bghow theyI*/a dependence seen at small particle separations.
come influenced by their neighbors. We represent this behav- - .
ior by the phenom)(/anologicalgexpression P (ArZ,(7)) shown in Fig. 6[27]. As expected|* varies as
¢~1[21,28. These measurements I3t are also compared
2\ 2 with the average center-to-center distance between nearest-
<Avrel>7' i H H H H H i i
(22) neighbor particles in the suspension, which is given approxi-
mately byd,,=1.8a¢ % sinced,, is equal to & for close
packing. At this ultrasonic frequency €£2.35 MHz), |* is
where 7, is the local crossover time, or the average timesimilar in magnitude tad,,, throughout the entire range of
interval after which the ballistic motion is altered by inter- volume fractions, demonstrating the very short length scales
particle interactions. Fits of this empirical expression to ourat which the relative motion of the scattering particles can be
data are shown by the solid curves in Fig. 6. This figuremeasured in DAWS.
shows that Eq(22) gives an excellent description of the By lowering the ultrasonic frequency belowf
crossover behavior, allowing accurate measurements of both2.35 MHz, we are able to investigate the dependence of

2 o e
Al )= rr?”

AV,e=(AVZ) and 7, to be obtained. the relative velocity fluctuations on length scale, sihte
In Sec. Il we emphasized that DAWS measuresncreases at lower frequencies as the wavelength becomes

larger than the particle size. As discussed in Sefsdk Eq.
(19)], varyingl* allows us to probe the instantaneous spatial
fcorrelations of the particle velocities, since we can measure
AV, at early times before the correlations have begun to
5 decay temporally. Typical data for two different volume frac-
: tions are illustrated in Fig. 8, which showsV,,, normal-
ized by the average fluid flow velocity;, as a function of
I*, normalized by the bead radius. Also shown, by the dotted
horizontal lines, isy2 times the root mean square velocity
Vims, Measured using DSS, and again normalized by the
fluid flow velocity V; . At small particle separationaV g is
proportional to the square root of the average interparticle
separation*, giving a direct measure of the correlations in
the particle velocities. At larger particle separations the ve-
locity correlations weaken, and the relative velocity of the
particles approachefV, s, the value expected for particles
4 that move randomly. This behavior is well described by Eq.
(19) if we assume that the velocity correlation function de-
FIG. 7. The smallest values of the transport mean free path Cays exponentially with distance, so that
used in our experiments, performed at a frequency of 2.35 MHz. AV
These data are compared with the average nearest-neighbor distance rel
between the particles. AVims

(ArZ(7)) on a length scale determined by the ultrasonic
transport mean free patfi. In Fig. 7, we plot the values of
[* as a function of volume fraction for the measurements o

=\2[1—exp(—1*/&)]Y2, (23
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FIG. 9. The relative velocity, normalized by the rms velocity,  F|G. 10. (a) The root mean square relative velocity at the
plotted as a function of the particle separation, normalized by thgearest-neighbor separation, normalized by the fluid flow velocity
measured correlation length. Data from all the samples fall onto thgng piotted as a function of volume fraction for three different
same curve, governed by an exponentially decaying correlatioample thicknesses. The solid line shows ¢he’? dependence ex-
function [Eq. (23)]. hibited by the data up to a volume fraction of about ql#). The

local crossover time, divided by the time for the fluid to travel a
where¢ is the instantaneous velocity correlation length. Thesingle bead radiusa/V;. The horizontal line shows that the nor-
solid lines in Fig. 8 show the results of fitting of E@.9) to =~ malized crossover time is-0.5.

the data with only a single fitting parameter, namely, the . - .
correlation lengthé, whose magnitude can then be deter-volume fraction. As in Fig. 9, these data were taken in one of

mined. Note that both thel* behavior seen in our data at our cells that is about 30 bead radii thick. Figuréal&Ghows

short length scales and the crossover to a relative velocitg1at the relative velocity is large, even at this shortest length
r

that is independent of length scale at longer length scales, a alg, and Increases approximately 'S’ up to a volume_
well characterized by Eq23). Thus, by combining measure- action of 0.40. At higheip, AV, starts to decrease again
’ as the particle flows become more strongly correlated. The

ments of the relative velocity as a function of length scale . . .
using DAWS with measurements of the rms velocity usingsecond guantity thglt can 'be directly measured frqm the time
DSS, we are able to determine the spatial extent of the codePendence ofAry,(7)) is the local crossover time,,
relations in the particles’ motion and indirectly measure theVhich we plot in Fig. 1(b) as a function of the volume
velocity correlation function. fraction. Here we have normalizeg}, by the characteristic

To further demonstrate that the length scale dependendéne taken by the fluid to travel a bead raditgs=a/V; .
of the relative velocity fluctuations is well described by Eq. This figure shows that the ratig; /t;~1/2 throughout the
(23), Fig. 9 shows our data for all the volume fractions in- gntlre volume fraction range; thus, th_e partlcles_ move bgllls-
vestigated in the 450178x12.8 mn? cell. In this figure, t|ca_1lly relat|v_e to each other for quite short t|mes during
we normalize the relative velocity for each volume fractionWhich the fluid has, on average, only moved a distance equal
by the corresponding value df, and the average particle to one half th_e particle radius. These resultsﬁgrals_o aIIo_vy
separation by the measured correlation lerigtRemarkably, YS to deFermme a length scale for !ocal motions in fluidized
all the data collapse onto a single curve, which is given bySUSPENSIONSAde=AViqm/\/3; this length scale corre-
Eq. (23) for effective particle separations spanning nearlySPonds to the average change in the separation of adjacent
two orders of magnitude. This scaling plot indicates that thé)art!C|e§ before' their traje_ctorles become modified by inter-
velocity correlation function decays exponentially with dis- Particle interactions, and is typically about one-fourth of the
tance over the entire range of particle separations investparticle radius. _ _
gated, allowing the velocity correlation length to be reliably ~ These results for the local relative velocity also allow us
measured from the length scale dependenc&\gt,. to measure the average strain ratet the average nearest-

Furthermore, by using th¢l* dependence of the relative neighbor separation, as shown by the solid symbols in Fig.
velocity to interpolate or extrapolat&V, to the nearest- 11(a). Again we normalize™ by t;=a/V;, thereby account-
neighbor particle separation, we measure the local relativing for the fact that the fluidization velocity sets the scale for
velocity at the shortest distances over which the relative mothe strain rate as well as for the velocity fluctuations. Figure
tion can be defined. Figure (@ shows the local relative 11(a) shows that the local strain rate is large, indicating that
velocity, normalized by fluid velocity, as a function of there are very considerable local rearrangements of the par-
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0.7 lation length increases quite rapidly with, exhibiting an
I approximately linear dependence on volume fraction. This

dependence has the interesting and somewhat surprising con-

N sequence that the number of particles in a correlation volume
~ increases with volume fraction a&*, so that the correlation
E volume contains about 40 times more particles¢at 0.5
than it does ap=0.2.
o1 . V. CONCLUSIONS
70 ———— ' ] By taking advantage of recent progress in understanding

the diffusive propagation of ultrasound in strongly scattering
media, we have developed the ultrasonic technique called
diffusing acoustic wave spectroscopipAWS). This tech-
nigue uses multiply scattered ultrasonic waves to investigate
the dynamics of systems in which traditional imaging tech-
niques break down and other approaches are needed to in-

10 (b) 7 vestigate their properties. In this paper, we describe both the

g —— ; ] theoretical foundations and practical implementation of

0.05 0.1 0.6 DAWS. As an example of the possible applications of this
¢ technique, we show how it can be used to study the complex

flow behavior of particulate suspensions, focusing on fluid-
FIG. 11. (a) The local average strain rate at the nearest-neighbojzg( suspensions of millimeter-sized particles in a liquid. In
separation, normalized kg/V; . (b) The instantaneous correlation this type of system, DAWS gives a sensitive approach for
length, normalized by the particle radius, measured using DAWSy,645ring both the relative motion of the scatterers and the
and DSS, anq plotted versus volume fraction for two sample thiCk'strain rate over a wide range of length scales, down to the
nesses. The lines are power law fits to the data. distance between nearest-neighbor particles. In addition,
DAWS can measure the time interval, before interparticle
ticles over short times. Physically, sinte=27 [c.f., Fig. interactions modify the relative trajectories of the particles,
1(Xb)], the normalized strain raté‘—alvf Corresponds to glVIng information on the local |ength scale of the partiCIe
roughly twice the maximum strain that any local cluster ofdynamicsAdsep, Which is equal to the average change in the
nearest-neighbor particles experiences before each particled¢paration between nearest-neighbor particles during
direction of motion is altered. At low volume fractions, the Since DAWS measures the relative motion of the scatterers

normalized strain rate at the nearest-neighbor separation iver a range of length scales, it also probes the spatial cor-
creases more rap|d|y Wltﬂ) than the relative Ve|ocity, re- relations of the partlcle velocities; when combined with mea-

flecting decrease in particle separation with volume fractionsurements of the rms particle velocity using dynamic sound
Up to ¢~0.4, Ta/V; varies~¢2? but it eventually drops scattering, we have shown how DAWS can be used to mea-

off at even higher volume fractions as the confining effect ofSure the velocity correlation function and hence determine

the neighboring particles causes the flows to become mor‘ig‘e velopity correlation lengtz. The_se data for flu!dlzed .
correlated. suspensions demonstrate the considerable potential of this

Finally, we show in Fig. 1(b) how the instantaneous cor- technique for determining important information about the
relation length varies with volume fraction for the same fly-dynamics of strongly scattering materials, information that
idized bed with thickness 30 At low volume fractions ¢ can be used both in fundamental studies of their dynamic
<0.2) we find a~ ¢~ 3 dependence on volume fraction properties as well as in practical applications in the nonde-

which means that the number of particles in a correlatiorptructive characterization of materials.
volume remains approximately constant at different volume
fractions. At these low volume fractions, the magnitude and
volume fraction dependence of our data are in agreement We wish to acknowledge NSERC, NATO, and the donors
with the extrapolation of particle imaging velocimetry ex- of the Petroleum Research Fund, administered by the ACS,
periments on sedimenting suspensidi®®], measured at for support of this research. We would also like to thank
very low volume fractions and a much lower particle Rey-Arthur E. Bailey for his assistance with some of our initial
nolds number. At high volume fractions, however, the corre-experiments.
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